Journal of Fluorine Chemistry, 25 (1984) 289-299

Received: August 17, 1983; accepted: September 28, 1983

CATALYTIC AND AUTOCATALYTIC DISPROPORTIONATION REACTIONS OF FLUOROPHOSPHINES AND RELATED LOWER VALENCE NONMETAL FLUORIDES

REINHARD SCHMUTZLER and OTHMAR STELZER^{*} Lehrstuhl B für Anorganische Chemie der Technischen Universität, Pockelsstrasse 4, 3300 Braunschweig (F.R.G.)

JOEL F. LIEBMAN^{**} Department of Chemistry University of Maryland Baltimore County Catonsville, Maryland 21228 (U.S.A.)

SUMMARY

In this paper we discuss the mechanism of the related disproportionation reactions

> 2 $\operatorname{RPF}_2 \longrightarrow \frac{1}{n} (\operatorname{RP})_n + \operatorname{RPF}_4$ 3 $\operatorname{R}_2\operatorname{PF} \longrightarrow \operatorname{R}_2\operatorname{P}-\operatorname{PR}_2 + \operatorname{R}_2\operatorname{PF}_3$

We consider displacement reactions on both fluorine and phosphorus, catalysis and autocatalysis by hydrogen fluoride and the product fluorophosphorane, the effect of substituents on the rate, and isoelectronic analogies involving both other group V atoms and halogens. We also consider related disproportionation reactions of lower valence fluorides of other nonmetals such as S, Cl and Xe. From these comparisons, we deduce the following mechanism (Z = R,F)

0022-1139/84/\$3.00

^{*}Current address: Fachbereich 9-Anorganische Chemie, Universität Gesamthochschule, Wuppertal, Gauβstraβe 20, 5600 Wuppertal (F.R.G.) **Faculty Fellow, German Academic Exchange Service (DAAD), Technische Universität Braunschweig (F.R.G.)

INTRODUCTION: LITERATURE MECHANISM AND THE ROLE OF ACID CATALYSIS

It is well established that fluorophosphines have a tendency to disproportionate into fluorophosphoranes and compounds containing P-P bonds [1,2]:

$$2 \operatorname{RPF}_2 \longrightarrow \operatorname{RPF}_4 + \frac{1}{n} (\operatorname{RP})_n \tag{1}$$

$$3 R_2 PF \longrightarrow R_2 PF_3 + R_2 P - PR_2$$
(2)

One observed regularity in this reaction is that it is slowed down by electronegative substitutents [3,4]. For example, methyl difluorophosphine disproportionates considerably faster than the phenyl analog [5]. Analogously, to convert PF₃ into PF₅ and elemental phosphorus, it is necessary to use an electric discharge [6]. Alternatively, high temperature reaction of PF₃ with KF or CsF [7,8] may be employed where the high stability of the PF₆ ion [9] assists the disproportionation. Furthermore, although perhaps not surprisingly, trialkyl phosphines show no tendency to disproportionate. In this paper we wish to discuss the mechanism of reactions (1) and (2) in the light of more general nonmetal chemistry.

Earlier [10] the following mechanism for the disproportionation of diphenyl fluorophosphine has been proposed (Scheme 1)

Scheme 1

An analogous mechanism can be written for other fluorophosphines and we commence our discussion with the initial formation of phosphino-phosphonium salts (Z = F or R)

$$F \xrightarrow{R}_{Z} P \xrightarrow{R}_{Z} P \xrightarrow{R}_{F} \longrightarrow \begin{bmatrix} R & R \\ F \xrightarrow{P}_{Z} P & R \end{bmatrix}^{+} F^{-}$$
(3)

As a precedent we cite the formation of amino-, phosphino-, or arsinophosphonium salts from the reaction of the chloro-amine, -phosphine or -arsine with alkyl phosphines [11,12]. In addition, of course, there is the well known quaternization reaction of tertiary phosphines with alkyl halides [13]. It is to be noted that alkyl fluorides are relatively inert in such nucleophilic displacement on carbon reactions [14], and in general, C-F [15], N-F [16], O-F [17,18], P-F [e.g. in PF3] [19], S-F [20] and Xe-F [21] bonds are remarkably unreactive with regard to hydrolysis. Accordingly, we may thus explain the relative reactivities of the fluorophosphines. For the reaction of interest, it is necessary that the phosphine is both a good Lewis base [22] and a poor fluoride donor [23]. We expect analogous behavior for other fluorophosphines with electronegative substituents. Indeed, it is somewhat surprising that the disproportionation reactions occur as rapidly as they do [1]. By analogy to numerous other X-F (X = C, N, O, P, S, Xe) species [15-21], we anticipate catalysis by some Lewis or Brønsted acids [24]. Even if one discounts the possibility of HF formation by hydrolysis [25], the final fluorophosphorane serves admirably in this capacity [26]. While one hesitates to invoke catalysis by the product, some striking examples of autocatalysis [24] in C-F [27], S-F [28] and Xe-F [29] chemistry have been noted. We additionally note that acid-induced dimerization of SF₂ [30]^{*}, formation of 0_2^+ salts from OF₂ with AsF₅ [32,33], and formation of Cl_2F^+ salts from ClF and AsF₅[34,35] have a mechanism related to (3),

^{*}In the meantime it has been reported that SF_2 and F_3SSF (recently isolated in especially high purity) do not disproportionate into SF_4 and S_2F_2 but decompose smoothly into SF_4 and elemental sulfur [31]. It cannot, however, be excluded that the amount of HF present in the system will affect the course of the disproportionation reaction of F_3SSF .

$$\mathbf{F}_{2}\mathbf{S} | \overbrace{\mathbf{F}}^{\mathbf{F}} \mathbf{F}^{\mathbf{F}} \mathbf{H}^{\mathbf{F}} \longrightarrow \mathbf{F}_{2}\mathbf{S}^{\mathbf{F}} - \mathbf{S}\mathbf{F} + \mathbf{F} - \mathbf{H}$$
(4)

 F_2S^+ -SF then acquires another F^- to form F_3S -SF

$$F_{2}0| \longrightarrow F_{F} AsF_{5} \longrightarrow [F_{2}0^{+}-0F]^{+}[AsF_{6}]^{-}$$
(5)

 $F_2 0^+\text{-}0F$ sequentially loses fluorine to form $0_2 F^+,$ and then 0_2^+

$$FC1 | \overbrace{C1-F}^{r} AsF_5 \longrightarrow [FC1^+-C1]^+ [AsF_6]^-$$
(6)

this salt can be isolated

As we do not expect corresponding transfer of carbanions [36-38], trialkyl phosphines are not expected to disproportionate nor do alkyl ethers, thioethers and halides react with acids to yield products analogous to those of reactions (4) - (6).

Alternatively, there could have been nucleophilic displacement on fluorine [39],

$$F \xrightarrow{R}_{Z} P | \xrightarrow{F}_{Z} \xrightarrow{R}_{Z} \longrightarrow \begin{bmatrix} R \\ F \xrightarrow{P} - F \\ Z \end{bmatrix}^{+} \xrightarrow{P}_{Z}$$

$$(7)$$

Although analogous reactions of phosphines and C-F [40], N-F [41], S-F [42] and Xe-F [43] bonds may be noted, in all cases there is a considerably better leaving group than PZR⁻ and/or a weaker X-F bond being broken. It is well known that fluorine simultaneously destabilizes adjacent anions [44] relative to, and is less susceptible to nucleophilic displacement reactions on halogen, than its congeners [39]. As such, this does not disqualify analogs of this reaction from occurring in the reaction of trialkyl phosphines with halo derivatives of the trivalent group V elements [11]. For example,

$$Bu_{3}P + 2 Ph_{2}AsC1 \longrightarrow Bu_{3}PC1_{2} + (Ph_{2}As)_{2}$$
(8)

THE REACTION OF PHOSPHINOPHOSPHONIUM IONS WITH NUCLEOPHILES

Let us now consider the next step, the conversion of the phosphinophosphonium salt to the phosphinophosphorane

This step has numerous precedents: we know of both halophosphoranes and phosphonium halides [45] and indeed, a phosphinophosphorane has recently been isolated [46,47]. Indeed, we have earlier cited the

292

dimerization of SF₂ [30] as precendent and recall that the relative stability of pentacoordinate P, As and Sb has also been invoked to explain the (relative) ease of reactions such as (1), (2) and (8). Owing to the high P-F bond strength and the low F-F bond strength [48], we do not anticipate a nucleophilic attack on the P-F bond by F^- to form the diphosphine and F₂. (The analogous S_N2 reaction on iodine by I⁻ in the reaction of iodophosphines is much more reasonable and may be used to explain the absence of iodophosphoranes in the related disproportionation of iodophosphonium ion and phosphino-phosphorane to be set up quickly. However, there is a (probably) slow nucleophilic displacement reaction on fluorine that yields the diphosphine and a new phosphonium ion

$$\begin{array}{c} R & F \\ P \\ Z & P \\ Z & Z & Z \end{array} \xrightarrow{R} P - P \\ R & F \\ R$$

The $RZPF_2^+$ ion then acquires an F^- ion to form the observed fluorophosphorane. We note at this juncture that if Z = F, it is clearly imperative that there be a further reaction to form the polymeric $(RP)_n$ but all reactions described so far have formal analogues here. We have no way to date to differentiate between the proposed $S_N 2$ (F) reaction and the phosphorano-phosphino-phosphonium ion suggested earlier [10]. Most assuredly, analogues of the latter are necessary in the reaction of trialkyl phosphines with derivatives of the other trivalent group V elements [11,12].

RELATED DISPROPORTIONATION REACTIONS OF SF2 AND C1F*

However, let us discuss precedents for reaction (10) as to perhaps make it more plausible. The first reaction returns us to the chemistry of SF_2 where it is additionally known that acid treatment of SF_2 and its dimer results in the formation of SF_4 and both S_2F_2 and S_8 , depending

^{*}We recognize ClF, SF₂, and PF₃ as a set of perfluorinated 'equivalent elements' or 'paraelements' [50] as are F_2S^+ -SF and FCl⁺-Cl. These fluorocations are also related to the above phosphinophosphonium ions by 'paraelement' and isoelectronic reasoning.

on the conditions [30,31]. To explain the formation of SF_4 and S_2F_2 , it is merely necessary to invoke reaction (11) or analogous reactions

$$F_2S^+-S^-F \checkmark | SF_2 \longrightarrow F_2S=S + SF_3^+$$
(11)

to yield F-S-S-F by attack on the other fluorines. (We also anticipate related reactions with F_3S^+ -S [25] although we will not attempt to predict the relative rates of the three S_N^2 (F) reactions). The SF⁺₃ ion will then pick up an F⁻ ion to form SF₄ in an equilibrium reaction between the sulfurane and sulfonium ion, analogous to the above phosphorane-phosphonium ion problem. To form elemental sulfur, one need only invoke the intermediacy of S_2F^+ . (This is a well-characterized ion [30] that should readily be formed by F-transfer from S_2F_2 to SF⁺₃, reaction (12)).

$$S_2F_2 + SF_3^+ \longrightarrow S_2F^+ + SF_4$$
 (12)

This ion can then react with F_2S-S to form F_2S (to be recycled) and S_3F^+ through the intermediacy of $F_2S^+-S_3-F$. Subsequent chain lengthening yields S_n^+-F and eventually a ring fluorinated cyclo-sulfur cation [51]. In the presence of a very good fluoride acceptor, the ring fluorinated cyclo-sulfur cation is transformed into a ring dication, as observed in this reaction and more definitively by the oxidation [52] of preformed cyclooctasulfur [53]. Otherwise this fluorinated cyclo-sulfur cation can react with SF_2 , FSSF or F_2SS to form S_8 and SF_3^+ , F_2SSF^+ or $(F_3SS)^+$.

We note that the analogous disproportionation reactions of CF₃SF or its dimer [54] stop at CF₃SF₃ and CF₃SSCF₃, a finding compatible with the instability and lack of 'transferability' of CF₃ in contrast to F^- .

Another precedent for reaction (10) is the formation of ClF by the spontaneous reaction [55] of Cl_2 and ClF_3 , and the related decomposition of Cl_2F^+ to form Cl_2 and ClF_2^+ [34,35], recalling that we have already mentioned the formation of Cl_2F^+ from ClF and a strong Lewis acid. Transferring fluorine from Cl_2F^+ to another molecule of ClF yields ClF_2^+ and Cl_2 , while the analogous S_N^2 (Cl) reaction with Cl_2 gives Cl_3^+ salts. These are unstable and so Cl_2 is observed. The reaction of Cl_2 and ClF_3 is analogous to that just given but "with the film run backwards". If there is not a suitably strong fluoride acceptor, we must consider the products formed by reaction of Cl_2F^+ and ClF_2^+ with F⁻. In the former case, attack on the terminal chlorine occurs to form 2 ClF (ClClF₂ is seemingly unstable) while in the latter case ClF₃ (FClF₂) is formed. Accordingly, the direction of the reaction is dependent solely on the relative stabilities of the ions Cl_2F^+ and ClF_2^+ , and the neutral Cl_2 , ClF and ClF_3 [56-58].

RELATED NUCLEOPHILIC DISPLACEMENT REACTIONS ON FLUORINE

For completeness, we now list some other related nucleophilic displacement reactions on fluorine involving cationic donors of fluorine, the so-called 'type 3' $S_N 2$ (F) reactions [39].

 $Cl_2F^+ + Xe \longrightarrow Cl_2 + XeF^+ [ref. 59]$ (13)

$$\operatorname{KrF}^+$$
 + IF₅ \longrightarrow Kr + IF₆ [ref. 60,61] (14)

$$XF_2^+ + Rn \longrightarrow XF + RnF^+ [ref. 62]$$
 (15)

$$X = C1$$
, Br

There are many other reactions that are also probably of this type such as the disproportionation reactions of the other halogen fluorides [63]. In this regard, numerous possible reactions are impeded by either the low base strength of the nucleophile and/or the weak F^- donating ability as earlier noted for the lack of disproportionation reaction of PF_3 . Such examples include the nonequilibration of the xenon fluorides with xenon. For example, while thermochemical data [64] are insufficient to decide on whether reactions (16) and (17) are exothermic or endothermic,

$$2 XeF_2 \longrightarrow Xe + XeF_4$$
(16)

$$2 \text{ XeF}_4 \longrightarrow \text{XeF}_2 + \text{XeF}_6 \tag{17}$$

we know of no low temperature equilibrium reaction [65]. No reaction of Xe with XeF₃⁺ is known to the authors. This may be understood in terms of relative instability of XeF₃⁺ [66,67]. However, XeF₄ is seemingly too poor a base to react with XeF₃⁺ to form XeF₂ and XeF₅⁺ and so to catalyze reaction (17). Indeed, XeF₂ and XeF₅⁺ salts form stable complexes in the solid [68]. In principle, one could also accomplish reaction (16) by an anionic S_N^2 (F) reaction (18) but the necessary

$$F^{*}_{Xe-F} \xrightarrow{} F^{*}_{XeF_3} \longrightarrow F^{*}_{YeF_4} + XeF_4$$
(18)

 XeF_3 does not appear to be stable in solution [69]. We recall PF_3 does not disproportionate or equilibrate with PF_5 and elemental phosphorus. That this may be accomplished by heating with alkali metal fluorides [7,8] suggests that one may likewise disproportionate or equilibrate the xenon fluorides. We know of no such study in this regard.

ACKNOWLEDGEMENTS

One of us (J.F.L.) wishes to thank the German Academic Exchange Service (DAAD) for financial support and the opportunity to do research in Germany, and his coauthors for hospitality and friendship in Braunschweig where this project was initiated. Prof. A. Haas, Prof. J. Passmore, Prof. F. Seel and Dr. W. Gombler are thanked for helpful comments. Ms. P. Gagné is thanked for typing this paper.

REFERENCES

- 1 V.N. Kulakova, Yu.M. Zinov'ev and L.Z. Soborovskii, Zh. Obshch. Khim., 29, (1959) 3957.
- 2 F. Seel and K. Rudolph, Z. anorg. allg. Chem., 363 (1968) 233.
- 3 M. Fild and R. Schmutzler, J. Chem. Soc. (A), (1969) 840.
- 4 J.F. Nixon, Endeavour, <u>32</u>, (1972) 19; J.F. Nixon, in H.J. Emelèus and A.G. Sharpe (Editors), Adv. Inorg. Chem. Radiochem., Academic Press, New York, 1970, Vol. 13, p. 363.
- 5 R. Schmutzler, Chem. Ber., 98, (1965) 552.
- 6 H. Moissan, Compt. Rend., <u>99</u>, (1884) 970; Ann. Chim. Phys., <u>6</u>, (1885) 433.
- 7 A.A. Woolf, J. Chem. Soc., (1955) 279.
- 8 E.L. Muetterties, T.A. Bither, M.W. Farlow and D.D. Coffman, J. Inorg. Nucl. Chem., <u>16</u>, (1961) 52.
- 9 R. Schmutzler, in M. Stacey, J.C. Tatlow and A.G. Sharpe (Editors), Advances in Fluorine Chemistry, Butterworths, London, 1965, Vol. 5, p. 218.
- 10 C. Brown, M. Murray and R. Schmutzler, J. Chem. Soc. (C), (1970) 878.

296

- 11 S.E. Frazier, R.P. Nielsen and H.H. Sisler, Inorg. Chem., <u>3</u>, (1964) 292; S.R. Jain and H.H. Sisler, <u>ibid.</u>, <u>7</u>, (1968) 2204; S.F. Spangenberg and H.H. Sisler, <u>ibid.</u>, <u>8</u>, (1969) 1006; J.C. Summers and H.H. Sisler, ibid., <u>9</u>, (1970) 862.
- 12 F. Seel and K.D. Velleman, Chem. Ber., <u>104</u>, (1971) 2967; F. Seel and
 H. Keim, <u>ibid.</u>, <u>112</u>, (1979) 2278.
- 13 L. Maier, in G.M. Kosolapoff and L. Maier (Editors), Organic Phosphorus Compounds, Wiley-Interscience, New York, 1972, Vol. 1, p. 77.
- 14 A. Streitwieser, Jr., Solvolytic Displacement Reactions, McGraw-Hill, New York, 1959, p. 9.
- 15 C.G. Swain and R.E.T. Spalding, J. Amer. Chem. Soc., <u>82</u>, (1960) 6104.
- K. Baum and H.M. Nelson , J. Amer. Chem. Soc., <u>88</u>, (1966) 4459;
 K. Baum, J. Org. Chem., 32, (1967) 3648.
- 17 S.N. Misra and G.H. Cady, Inorg. Chem., <u>11</u>, (1972) 1132.
- 18 E.H. Appelman, Acc. Chem. Res., 6, (1973) 113.
- 19 Ref. 9, p. 41
- 20 G.C. Demitras and A.G. MacDiarmid, Inorg. Chem., 3, (1964) 1198.
- 21 E.H. Appelman and J.G. Malm, J. Amer. Chem. Soc., <u>86</u>, (1964) 2297.
- 22 M.F. Lappert, J.B. Pedley, B.T. Wilkins, O. Stelzer and E. Unger, J. Chem. Soc. Dalton, (1975) 1207.
- 23 S. Fleming, M.K. Lupton and K. Jekot, Inorg. Chem., <u>11</u>, (1972) 2534.
- 24 J.F. Liebman and T.H. Vanderspurt, J. Fluorine Chem., <u>2</u>, (1972/73) 415.
- 25 Ref. 9, p. 90.
- 26 Ref. 9, p. 90; R. Schmutzler and G.S. Reddy, Inorg. Chem., <u>4</u>, (1965) 191, <u>ibid</u>. <u>5</u> (1966) 165.
- 27 S. Cohen, J.R. Lacher and J.D. Park, J. Amer. Chem. Soc., <u>81</u>, (1959) 3480.
- 28 D.T. Sauer and J.M. Shreeve, J. Fluorine Chem., 1, (1972) 1.
- 29 M.J. Shaw, H.H. Hyman and R. Filler, J. Org. Chem., <u>36</u>, (1971) 2917.
- 30 F. Seel, in H.J. Emclèus and A.G. Sharpe (Editors), Adv. Inorg. Chem. Radiochem., Academic Press, New York, 1974, Vol. 16, p. 297.

- 31 F. Seel and R. Stein, J. Fluorine Chem., <u>14</u>, (1979) 339.
 32 J.B. Beal, Jr., C. Pupp and W.E. White, Inorg. Chem., <u>8</u>, (1969) 828.
- 33 J.F. Liebman, J. Fluorine Chem., 9, (1977) 153.
- 34 K.O. Christe and W. Sawodny, Inorg. Chem., 8, (1969) 212.
- 35 R.J. Gillespie and M. Morton, ibid., 9, (1970) 811.
- 36 G. Wittig, Naturwissenschaften, 30, (1942) 646.
- 37 S.V. Sunthankar and H. Gilman, J. Org. Chem., 16, (1951) 8.
- 38 D.J. Cram, Fundamentals of Carbanion Chemistry, Academic Press, New York, 1965, Chapter 6.
- 39 J.F. Liebman and B.B. Jarvis, J. Fluorine Chem., 5, (1975) 41.
- 40 W.E. Middleton, E.G. Howard and W.H. Sharkey, J. Org. Chem. 30, (1965) 1385.
- 41 R.E. Banks, R.N. Haszeldine and R. Hatton, Tetrahedron Letters, (1967) 3993.
- 42 W.C. Smith, J. Amer. Chem. Soc., 82, (1960) 6176.
- 43 J.A. Gibson, R.K. Marat and A.F. Janzen, Can. J. Chem., <u>53</u>, (1975) 3044.
- 44 J. Hine and N.W. Burske, J. Amer. Chem. Soc., 78, (1956) 3337.
- 45 D. Hellwinkel, in G.M. Kosolapoff and L. Maier (Editors), Organic Phosphorus Compounds, Wiley-Interscience, New York, 1972, Vol. 3, p. 185.
- 46 H.W. Roesky, K. Ambrosius and W.S. Sheldrick, Chem. Ber., <u>112</u>, (1979) 1365.
- 47 N. Weferling and R. Schmutzler, Am. Chem. Soc. Symposium Series, No. 171 (Phosphorus Chemistry), Editors, L.D. Quin and J.G. Verkade, (1981) 425; D. Schomburg, N. Weferling, and R. Schmutzler, J. Chem. Soc. Chem. Comm., (1981) 609; N. Weferling and R. Schmutzler, Liebigs Ann. Chem., (1982) 167; H.M. Schiebel, R. Schmutzler, D. Schomburg, and U. Wermuth, Z. Naturforsch. (B), <u>38</u>, (1983) 702; M. Murray and R. Schmutzler, unpublished results.
- 48 B. de B. Darwent, Bond Dissociation Energies in Simple Molecules, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.) No. 31, 1970.
- 49 N.G. Feshchenko and A.V. Kirsanov, Zh. Obshch. Khim., <u>31</u>, (1961) 1399; N.G. Feshchenko, T.V. Kovaleva and A.V. Kirsanov, <u>ibid.</u>, <u>39</u>, (1969) 2184.
- 50 A. Haas, Chemiker-Zeitung, 106, (1982) 239.

- 51 For a report of an analogous iodinated cation, J. Passmore, P. Taylor, T.K. Whidden and P. White, J. Chem. Soc. Chem. Commun., (1976) 689.
- 52 R.J. Gillespie, J. Passmore, P.K. Ummat and O.C. Vaidya, Inorg. Chem., 10, (1971) 1327.
- 53 B. Meyer, Chem. Rev. 76, (1976) 367.
- 54 W. Gombler, A. Haas and H. Willner, Z. anorg. allg. Chem., <u>469</u>, (1980) 135.
- 55 H. Schmitz and H.J. Schumacher, Z. Naturforsch., 2a, (1947) 362.
- 56 J.I. Musher, Angew. Chem., 81, (1969) 68.
- 57 D.R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd Edit., Nat. Stand. Ref. Data Ser., Nat. Bur. Stand., No. 37 (1971).
- 58 M.R. Clarke, W.H. Fletcher, G. Mamantov, E.J. Vasini and D.G. Vickroy, Inorg. Nucl. Chem. Lett., 8, (1972) 611.
- 59 K.O. Christe and R.D. Wilson, Inorg. Nucl. Chem. Lett., <u>9</u>, (1973) 845.
- 60 D.E. McKee, C.J. Adams, A. Zalkin and N. Bartlett, Chem. Commun., (1973) 26.
- 61 J.F. Liebman, J. Fluorine Chem., 9, (1977) 147.
- 62 L. Stein, Science, 168, (1970) 362; 175, (1972) 1463.
- 63 L. Stein, in V. Gutmann (Editor), Halogen Chemistry, Academic Press, New York, 1967, Vol. 1, p. 33.
- 64 J.F. Liebman, in J.J. Katz and I. Sheft (Editors), J. Inorg. Nucl. Chem. Suppl. (H.H. Hyman Memorial Volume), Pergamon Press, Oxford, 1976, p. 155.
- 65 N. Bartlett and F.O. Sladky, in J.C. Bailar, H.J. Emelèus, R.S. Nyholm and A.F. Trotman-Dickinson (Editors), Comprehensive Inorganic Chemistry, Pergamon Press, Oxford, 1973, p. 213.
- 66 R.J. Gillespie, B. Landa and G.J. Schrobilgen, Chem. Commun., (1971) 607.
- 67 D.E. McKee, A. Zalkin and N. Bartlett, Inorg. Chem., <u>12</u>, (1973) 1713; D.E. McKee, C.J. Adams and N. Bartlett, <u>ibid</u>., <u>12</u>, (1973) 1722.
- 68 N. Bartlett and M. Wechsberg, Z. anorg. allg. Chem., <u>385</u>, (1971) 5.
- 69 J.F. Liebman, J. Fluorine Chem., 7, (1976) 531.